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ABSTRACT

Traditional photogrammetric procedures based on metric cameras and standard photogrammetric equipment are very costly. Full
automatic procedures originated in the field of computer can accomplish this task at a much lower man time/equipment costs. In
this scenario though for operational convenience and accuracy of the results, one needs a robust procedure for calibrating the
camera in situ. This works presents a camera calibration technique based on the use of two (or more) independent calibration
planes, very robust with respect to noise and plane configurations, which is suited to be used in situ for high resolution image

acquisition.

1. Introduction

This work reports about a camera calibration technique
satisfying to the needed robustness and probability
prerequisites needed in this task.

We adopt Tsai’s model [15] which is standard in this field. In
this model, radial distortion is the main disturbance but the
sensitivity of the position of the image’s centre with respect to
the other parameters is also very important for accuracy
purposes. Ideally, intrinsic and all extrinsic parameters
(position and orientation of the camera with respect to the
world coordinate system) must be recover simultaneously.
However, because of numerical tractability, most of the
proposed calibration techniques are also two steps. In the first
step, one analytically finds an approximate solution to all the
considered parameters with null distortion. This is typically
accomplished by solving systems concerning a mixture of
linear and quadratic equations (the latter concemns the rotation
parameters). In the second step, the initial guess is used in
order to start iterative algorithms (such as Gauss-Newton or
extended Kalman filtering) aimed to evaluate the distortion
parameters and to make the obtained parameters as least noise
sensitive as possible [6], [15], [14], [11], [13]. A camera model
formed by two planes was originally proposed by [12]. A major
advantage of this arrangement is that it offers a variable
numbers of parameters with the possibility of increasing their
number for accuracy purpose. The major drawback of the
method proposed by [12] is that the computation of the forward
projection is rather difficult (contrarily to that of the backward
projection). The proposed calibration method borrows the idea
of the two planes from [12] but for calibration planes and uses
different ideas.

In order to currently determine intrinsic and extrinsic
parameters, one needs 3D features in the world coordinate
space which, in our method, are obtained as sets of
independent 2D features, the calibration plane. The use of
these sets of 2D objects is one way for simultaneously
estimating intrinsic parameters and validating the 3D
reconstruction. In the proposed method, even if we use the
rigidity constraint, the rigid transformation between
calibration planes is not known and no necessarily computed. It
suffices to compute the projective parameters among the
planes, which can be computed with high accuracy [4].

Section 2 states the problems and presents the relationships
upon which the calibration procedures of section 3 is built.
Section 4 gives some simulation results and experimental
results of this work. Section 5 contains the conclusions.

2. Projective and rigid transformations and problem
statement

Given a set of coplanar points {P} (called calibration plane in

the following) and projected image {Q} of these points, there
exists a projective transformation z between this plane and
image plane. An exact projective transformation z between

object coplanar points A =(X ,Y,J) and image points
m =(x,y,1) can be represented by vector 6 with the
following relationships:
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The relationships between {P} and {Q} define 7 uptoa
1scale factor, therefore, the oth component of € can be set
equal to 1. On the other hand rigid body transformation from
the object world (X,Y,Z) to the image plane (x,y) is [15]:
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=1+k (x xc) +a (y yc) (7)

a=G,/G,

where R isthe 3 x 3 rotation matrix
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form one set of extrinsic parameters. Value G, , Gy s Xos Ve
and k; are the intrinsic parameters. Parameters G, and G,

are the scale factors including focal length, size of CCD
elements and number of pixels. Values x, and y, denote the

position of the image centre with respect to the optical axis,
and k,; is the radial distortion parameter of the lens which

takes into account the non-linear effect far away from the
centre of the lens.
In the case of a null distortion parameter (k; =0), all

parameters (extrinsic and intrinsic) are included in the 6, ’s. In

this case, the projective transformation 7z can be solved as a
first step by using at least four pairs of corresponding (object
and image) coplanar points (Z =0, with no collinear triplet
among them) by the least mean squares. The relationship
between the projective transformation parameters and the
extrinsic and intrinsic parameters is:
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From this last relationship and the orthonormality of rotation
matrix R, we observe that we have to find 16 unknowns (12
for R and T and 4 for x,, y., G,, G, ) with (8 linear + 6
quadratic) 14 equations only. Therefore, in order to have as
many unknowns as equations, one needs at least a second
calibration plane. In this case, one has 28 unknowns and 28
equations. See in Table 1 how many unknowns follow
depending on the number of planes used for calibration

purpose.

3. Calibration procedure

After the estimation of vectors g , 62 | ., ¢"

respectively representing the » projective transformations (10)
between the calibration planes and the image plane, the
properties of the rotation matrix R can be used in order to

determine intrinsic parameters (xc, yc,Gx,Gy) .

Namely, consider equation (10) partially rewritten as:
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Table 1: Number of equations/unknowns versus the number of
planes (k; =0 , G, >0 , Gy>0 and z, > 0).

By the three quadratic relations between the components of the
first two columns of R (C,C, =0, |Q1“ =1 and "_(_,‘_2":])

one obtains:

T2ty s s =0 12)
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ra+id+r =1 (14)

By substituting the values of (11) in (12), one obtains:
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After equating (16) and (17), one obtains:

(67 -8)/c2 +(6- &)/ + 2 (86 -08) - x./C2 +
+2-(66,-68) 3./ G2 +(& +9§)-[1+(xc/Gx)2 +(yc/Gy)2]=0
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Equations (15) and (18) are the relationships between intrinsic
parameters of the vision system and the projective
transformation coefficients which can be extracted from the
estimates of parameters with at least two perspective

projections (identical equations can be obtained by 6() , g2

o).

S =[1 +(Xc /Gx)-’ +(yc /Gy) ], one obtains a linear system of

Dividing these equations by
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which is (for a single view):
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By the projective transformation coefticients of multiple
calibration planes, one can build matrix A, vector b,, and

the LMS solution w":

A=(al0 g7 .

>
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(22)

S I A s
Aw =b, = the LMS solution is: w =(A A) A'b,,
23)

If we assume that G, , G, and ¢, are positive, we can recover

(but it’s not necessary) a unique solution for all extrinsic
parameters with the previous equations. In conclusion, by the
use of the six quadratic relationships between rotation
components, we obtained:

e 2 relationships between intrinsic parameters given by (20),
e 1 relationship in order to recover the depth (i.e. ¢, given

by (16) or (17)),
e 3 relationships in order to derive the third column of the
rotation R (vector product C; xC, =0).

The previous estimates can be improved with respect to the
noise and distortion parameter. For each perspective projection

7 , consider vector y = (Q,k,,kz)T formed by eight projective
variables and the distortion (&, = k1a2 ). Equations (5) and (6)
can be approximated by ignoring the dependence of (xc R yc) in

the distortion. In this way, one decouples the estimation of
(xc,yc) from that of %;:
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with:
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A further linearization can be applied if we consider the weak
perspective in the distortion effect, that is:

x(GX+GY +1)+k) - x° +hy 07 -GX Y -G=0  (28)

y(GX +GY +1)+k;- 3" +ky-y* -, X -6Y -6=0  (29)

Then, the approximated linear system (for each € ) becomes:
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(30)

The LMS solution of the system provides better estimates of
the projective transformation parameters and gives one initial
estimate of the distortion parameter.

4. Performance evaluation
4.1. Simulation results

We have conducted a number of simulations with added noise
for a number of 30 different space configuration planes. Table
2 and 3 shows the results obtained with additive white uniform
noise with standard deviation €=0.5 and =1 for 500
simulations and with 72 data points (see Table 2 and 3).

Intrinsic parameters | estimated value exact value
G, 599.921 600.000
Gy 699.921 700.000
X 13.069 13.000
Ye -7.883 -8.000
k; 6.0e—11 10e-8

Extrinsic parameters

(exact value)

Ly ~20.066 —20.000
5 24.980 25.000
L 499.982 500.000
0, 15007 15.000
6, -9.997 ~10.000
6, 105.001 105.000

Mean quadratic error 32e-2

(pixel)
Extrinsic parameters
(second plane)

L -20.052 ~20.000
2 24946 25.000
L 399.975 400.000
6 30.002 30.000
6 19.996 20000
6 5.005 5000

Mean quadratic error 32e-2

(pixel)

Table 2: Simulated results with additive noise of standard
deviation €=0.5 pixel with 500 simulated images.

It’s worth noting that:
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e in all simulation conditions, distortion is not well estimated
and provides a bias in the estimation of all other
parameters even after optimisation process,

e the optimisation process tends to reduce this bias in a
significant way,

e the bias possibly induced by the added noise is not
significant with respect to that of the distortion, for a great
number of images samples.

&= i ("f - 51)2 +(yf - ”J’)z (=2

J=1

where (xj,yj) are the 2D image data, and (@,uj) are the

estimations of the localisation of the re-projected 2D features
with the projective transformation computed with the proposed
method (with s features).

Intrinsic parameters estimated value data
manufacturer
GX 1327 + 25 1030.0
Gy 1861+ 25 1443.0
*e -4+ 1] 0.0
Ye -17* 11 0.0
k1 3.0e—10 —
Max. mean quadratic 0.37
erTor- &y,, (pixel)

Intrinsic parameters estimated value exact value
Gy 599312 600.000
Gy 699.515 700000
x; 12.908 13.000
Ye -8574 -8.000
ky 30e-10 10e-8

Extrinsic parameters

(exact value)

Ly -20.006 ~20.000
ty 25.145 25.000
L 499846 500.000
Oy 14958 15.000
6, ~9.992 ~10.000
o; 105.004 105.000

Mean quadratic error 64e-2

(pixel)
Extrinsic parameters
(second plane)

2 -19.980 ~20.000
19 25.207 25.000
L 399867 400.000
2 29962 30.000
6 19978 20.000
24 4983 5000

Mean quadratic error 6.6e-2

(pixel)

Table 3: Simulated results with additive noise of standard
deviation & =1 pixel with 500 simulated images.

4.2. Experimental results

Actual experimentation by means of a SONY CCD camera
XC75-CE with a focal length of 16 mm, and a frame grabber
with 512x 512 pixels is currently in progress for high
resolution acquisition of images for tele-reality applications
(see Table 4).

In order to reduce the noise effect, ten images have been
grabbed for each configurations. By this way, the projective
transformation is computed ten times and an average

estimation (Q) is also obtained. We can notice that deviation

between estimated values of intrinsic parameters and those
computed by the data manufacturer are significant, only the
ratio

(Gx/Gy)esn'mated ~ (Gx/Gy) ok G

data manufacturer

is quite constant (and independent of the focal lens value).
For all N =50 configurations, the mean quadratic error &, is

computed in the image space:
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Table 4: Experimental results (intrinsic parameters) with fifty
configurations.

Emax = Max {¢.} (33)
1<csN
This &,,, value provides an estimation of the general accuracy

of this method. A small value of ¢,,, ensures the constancy of

all intrinsic parameters for the entire workspace enclosing the
configurations chosen. This is also a validation of Tsai’s
model.

5. Conclusions

A procedure whose characteristics and simulations make it
suitable to in situ camera calibration for high resolution image
acquisition has been presented. The procedure is currently
being used in the field of tele-reality applications.

Besides image mosaicing, the proposed procedure can be used
for many applications such as object recognition and
localisation (for which a calibrated camera allows one to use
rigid transformation, reducing the correspondence search),
stereo-vision (for all estimation of the Essential matrix), object
modelling and tracking, non-planar trajectory estimation in
robot vision and robot calibration.

Other fields of application are photogrammetry surveying: the
use of this procedure avoid the need of a metric camera, so a
common reflex camera can be engaged for the purpose and less
expensive surveying tasks are endorsed.

Obviously the method needs to be strengthened and more
precise algorithms must be developed to ensure the goodness
of the results and, at the same time, a broader use of the
algorithm purposed. In particular precision with regards the k;,

parameter is very important because it is the only distortion
parameter estimated, so, the better is the estimation of
distortion the better is the result the algorithm returns and the
wider is the range of camera the algorithm can calibrate.
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